Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(26): e2301258120, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37339224

RESUMO

Novel transmission routes can allow infectious diseases to spread, often with devastating consequences. Ectoparasitic varroa mites vector a diversity of RNA viruses, having switched hosts from the eastern to western honey bees (Apis cerana to Apis mellifera). They provide an opportunity to explore how novel transmission routes shape disease epidemiology. As the principal driver of the spread of deformed wing viruses (mainly DWV-A and DWV-B), varroa infestation has also driven global honey bee health declines. The more virulent DWV-B strain has been replacing the original DWV-A strain in many regions over the past two decades. Yet, how these viruses originated and spread remains poorly understood. Here, we use a phylogeographic analysis based on whole-genome data to reconstruct the origins and demography of DWV spread. We found that, rather than reemerging in western honey bees after varroa switched hosts, as suggested by previous work, DWV-A most likely originated in East Asia and spread in the mid-20th century. It also showed a massive population size expansion following the varroa host switch. By contrast, DWV-B was most likely acquired more recently from a source outside East Asia and appears absent from the original varroa host. These results highlight the dynamic nature of viral adaptation, whereby a vector's host switch can give rise to competing and increasingly virulent disease pandemics. The evolutionary novelty and rapid global spread of these host-virus interactions, together with observed spillover into other species, illustrate how increasing globalization poses urgent threats to biodiversity and food security.


Assuntos
Vírus de RNA , Varroidae , Abelhas , Animais , Vírus de RNA/genética , Evolução Biológica , Interações entre Hospedeiro e Microrganismos , Filogeografia
2.
BMC Biol ; 20(1): 284, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36527054

RESUMO

BACKGROUND: Vector-borne viral diseases threaten human and wildlife worldwide. Vectors are often viewed as a passive syringe injecting the virus. However, to survive, replicate and spread, viruses must manipulate vector biology. While most vector-borne viral research focuses on vectors transmitting a single virus, in reality, vectors often carry diverse viruses. Yet how viruses affect the vectors remains poorly understood. Here, we focused on the varroa mite (Varroa destructor), an emergent parasite that can carry over 20 honey bee viruses, and has been responsible for colony collapses worldwide, as well as changes in global viral populations. Co-evolution of the varroa and the viral community makes it possible to investigate whether viruses affect vector gene expression and whether these interactions affect viral epidemiology. RESULTS: Using a large set of available varroa transcriptomes, we identified how abundances of individual viruses affect the vector's transcriptional network. We found no evidence of competition between viruses, but rather that some virus abundances are positively correlated. Furthermore, viruses that are found together interact with the vector's gene co-expression modules in similar ways, suggesting that interactions with the vector affect viral epidemiology. We experimentally validated this observation by silencing candidate genes using RNAi and found that the reduction in varroa gene expression was accompanied by a change in viral load. CONCLUSIONS: Combined, the meta-transcriptomic analysis and experimental results shed light on the mechanism by which viruses interact with each other and with their vector to shape the disease course.


Assuntos
Vírus de RNA , Varroidae , Vírus , Humanos , Abelhas/genética , Animais , Carga Viral , Varroidae/genética , Vírus/genética , Interferência de RNA , Transcriptoma
3.
Curr Opin Insect Sci ; 39: 21-26, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32088383

RESUMO

While ectoparasitic Varroa mites cause minimal damage to their co-evolved ancestral host, the eastern honey bee (Apis cerana), they devastate their novel host, the western honey bee (Apis mellifera). Over several decades, the host switch caused worldwide population collapses, threatening global food security. Varroa management strategies have focused on breeding bees for tolerance. But, can Varroa overcome these counter-adaptations in a classic coevolutionary arms race? Despite increasing evidence for Varroa genetic diversity and evolvability, this eventuality has largely been neglected. We therefore suggest a more holistic paradigm for studying this host-parasite interaction, one in which 'Varroa-tolerant' bee traits should be viewed as a shared phenotype resulting from Varroa and honey bee interaction.


Assuntos
Abelhas/parasitologia , Varroidae , Acaricidas , Animais , Abelhas/genética , Evolução Biológica , Interações Hospedeiro-Parasita , Resistência a Inseticidas , Controle de Pragas , Varroidae/genética , Varroidae/patogenicidade , Varroidae/fisiologia , Tropismo Viral
4.
Sci Rep ; 7(1): 13091, 2017 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-29026097

RESUMO

Chemosensing is a primary sense in nature, however little is known about its mechanism in Chelicerata. As a model organism we used the mite Varroa destructor, a key parasite of honeybees. Here we describe a transcriptomic analysis of two physiological stages for the Varroa foreleg, the site of primary olfactory organ. The transcriptomic analysis revealed transcripts of chemosensory related genes belonging to several groups. These include Niemann-Pick disease protein, type C2 (NPC2), gustatory receptors (GRs), ionotropic receptors (IRs), sensory neuron membrane proteins (SNMPs) and odorant binding proteins (OBP). However, no insect odorant receptors (ORs) and odorant co-receptors (ORcos) were found. In addition, we identified a homolog of the most ancient IR co-receptor, IR25a, in Varroa as well as in other members of Acari. High expression of this transcript in the mite's forelegs, while not detectable in the other pairs of legs, suggests a function for this IR25a-like in Varroa chemosensing.


Assuntos
Perfilação da Expressão Gênica/métodos , Proteínas de Membrana/genética , Receptores de Superfície Celular/genética , Varroidae/genética , Animais , Receptores Odorantes/genética
5.
PLoS One ; 9(9): e106889, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25226388

RESUMO

BACKGROUND: The ectoparasitic mite, Varroa destructor, is considered to be one of the most significant threats to apiculture around the world. Chemical cues are known to play a significant role in the host-finding behavior of Varroa. The mites distinguish between bees from different task groups, and prefer nurses over foragers. We examined the possibility of disrupting the Varroa--honey bee interaction by targeting the mite's olfactory system. In particular, we examined the effect of volatile compounds, ethers of cis 5-(2'-hydroxyethyl) cyclopent-2-en-1-ol or of dihydroquinone, resorcinol or catechol. We tested the effect of these compounds on the Varroa chemosensory organ by electrophysiology and on behavior in a choice bioassay. The electrophysiological studies were conducted on the isolated foreleg. In the behavioral bioassay, the mite's preference between a nurse and a forager bee was evaluated. PRINCIPAL FINDINGS: We found that in the presence of some compounds, the response of the Varroa chemosensory organ to honey bee headspace volatiles significantly decreased. This effect was dose dependent and, for some of the compounds, long lasting (>1 min). Furthermore, disruption of the Varroa volatile detection was accompanied by a reversal of the mite's preference from a nurse to a forager bee. Long-term inhibition of the electrophysiological responses of mites to the tested compounds was a good predictor for an alteration in the mite's host preference. CONCLUSIONS: These data indicate the potential of the selected compounds to disrupt the Varroa--honey bee associations, thus opening new avenues for Varroa control.


Assuntos
Abelhas/fisiologia , Abelhas/parasitologia , Interações Hospedeiro-Parasita , Varroidae/fisiologia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...